
SuperLU: Sparse Direct Solver and 
Preconditioner 

X. Sherry Li	


xsli@lbl.gov	



http://crd.lbl.gov/~xiaoye/SuperLU	


	



Argonne Training Program on Extreme-Scale Computing 
(ATPESC)	



August 8, 2014	


	





SuperLU tutorial 2 

Acknowledgements 

 Supports from DOE, NSF, DARPA	


  FASTMath (Frameworks, Algorithms and Scalable Technologies for 

Mathematics)	


  TOPS (Towards Optimal Petascale Simulations)	


  CEMM (Center for Extended MHD Modeling)	



 Developers and contributors	


  Sherry Li, LBNL	


  James Demmel, UC Berkeley	


  John Gilbert, UC Santa Barbara	


  Laura Grigori, INRIA, France	


  Meiyue Shao, Umeå University, Sweden	


  Pietro Cicotti, UC San Diego	


  Piyush Sao, Gerogia Tech	


  Daniel Schreiber, UIUC	


  Yu Wang, U. North Carolina, Charlotte	


  Ichitaro Yamazaki, LBNL	


  Eric Zhang, Albany High School	



	





SuperLU tutorial 3 

Quick installation 

 Download site  http://crd.lbl.gov/~xiaoye/SuperLU	


  Users’ Guide,  HTML code documentation	



 Gunzip, untar	


 Follow README at top level directory	



  Edit make.inc for your platform (compilers, optimizations, libraries, ...)	


   (may move to autoconf  in the future)	


  Link with a fast BLAS library	



•  The one under CBLAS/ is functional, but not optimized	


•  Vendor, GotoBLAS, ATLAS, … 	
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Outline of Tutorial 

 Functionality	


 Sparse matrix data structure, distribution, and user interface	


 Background of the algorithms	



  Differences between sequential and parallel solvers	


 Examples, Fortran 90 interface	



 Hands on exercises	





Solve sparse Ax=b : lots of zeros in matrix 

"   fluid dynamics, structural mechanics, chemical process simulation, 
circuit simulation, electromagnetic fields, magneto-hydrodynamics, 
seismic-imaging, economic modeling,  optimization, data analysis, 
statistics, . . . 

"   Example: A of dimension 106,   10~100 nonzeros per row 
"   Matlab:  > spy(A) 

5 

Mallya/lhr01 (chemical eng.) Boeing/msc00726 (structural eng.) 
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Strategies of sparse linear solvers 
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 Solving a system of linear equations Ax = b	


•  Sparse:  many zeros in A;  worth special treatment	



 Iterative methods: (e.g., Krylov, multigrid, …)	


  A is not changed (read-only)	


  Key kernel: sparse matrix-vector multiply	


•  Easier to optimize and parallelize	


  Low algorithmic complexity, but may not converge	



 Direct methods	


  A is modified (factorized)	


•  Harder to optimize and parallelize	


  Numerically robust, but higher algorithmic complexity	



 Often use direct method to precondition iterative method	


  Solve an easy system: M-1Ax = M-1b	
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Available direct solvers 

 Survey of different types of factorization codes	


	

http://crd.lbl.gov/~xiaoye/SuperLU/SparseDirectSurvey.pdf	


  LLT (s.p.d.) 	


  LDLT (symmetric indefinite) 	


  LU (nonsymmetric)	


  QR (least squares)	


  Sequential, shared-memory (multicore), distributed-memory, out-of-

core	


  GPU, FPGA become active.	



 Distributed-memory codes: usually MPI-based	


  SuperLU_DIST [Li/Demmel/Grigori/Yamazaki]	



•  accessible from PETSc, Trilinos, . . .	


  MUMPS, PasTiX, WSMP, . . .	
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SuperLU Functionality 

 LU decomposition, triangular solution	


 Incomplete LU (ILU) preconditioner (serial SuperLU 4.0 up)	


 Transposed system, multiple RHS	


 Sparsity-preserving  ordering	



  Minimum degree ordering applied to ATA or AT+A [MMD, Liu `85] 	


  ‘Nested-dissection’ applied to ATA or AT+A [(Par)Metis, (PT)-Scotch]	



 User-controllable pivoting	


  Pre-assigned row and/or column permutations	


  Partial pivoting with threshold	



 Equilibration: 	


 Condition number estimation	


 Iterative refinement	


 Componentwise error bounds [Skeel `79, Arioli/Demmel/Duff `89]	



cr ADD
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Software Status 

  Fortran interfaces	


  SuperLU_MT similar to SuperLU both numerically and in usage	



SuperLU	

 SuperLU_MT	

 SuperLU_DIST	



Platform	

 Serial	

 SMP,  multicore	

 Distributed	


memory	



Language	

 C	

 C + Pthreads	


or OpenMP	



C + MPI + 
OpenMP + 
CUDA	



Data type	

 Real/complex,	


Single/double	



Real/complex,	


Single/double	



Real/complex,	


Double	



Data structure	

 CCS / CRS	

 CCS / CRS	

 Distributed CRS	
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Usage of SuperLU 

 Industry	


  Cray Scientific Libraries	


  FEMLAB	


  HP Mathematical Library	


  IMSL Numerical Library	


  NAG	


  Sun Performance Library	


  Python (NumPy, SciPy)	



 Research	


  In FASTMath Tools: Hypre, PETSc, Trilinos, …	


  M3D-C1, NIMROD (burning plasmas for fusion energys)	


  Omega3P (accelerator design)	


  . . .	
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Data structure: Compressed Row Storage (CRS) 

 Store nonzeros row by row contiguously	


 Example: N = 7,  NNZ = 19	


 3 arrays:	



  Storage: NNZ reals,  NNZ+N+1 integers	
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Many other data structures:  “Templates for the Solution of Linear Systems: 
Building Blocks for Iterative  Methods”,  R. Barrett et al.	
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User interface – distribute input matrices 

  Matrices involved:	


  A, B (turned into X) – input, users manipulate them	


  L, U – output, users do not need to see them	



  A (sparse) and B (dense) are distributed by block rows	



	

 	

 	

 	

 	

 	

	


	

 	

 	

 	

 	

 	

Local A stored in	


	

 	

 	

 	

 	

 	

Compressed Row Format	



	



  Natural for users, and consistent with other popular packages: e.g. 
PETSc	



A	

 B	


x     x      x     x 

x     x      x 

x      x           x 

x      x           x 

P0 

P1 

P2 
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Distributed input interface 

 Each process has a structure to store local part of A 	


	

Distributed Compressed Row Storage	


	

	


	

	



    typedef struct {	


	

    int_t   nnz_loc;  // number of nonzeros in the local submatrix	


	

    int_t   m_loc;     // number of rows local to this processor	


	

    int_t   fst_row;   // global index of the first row	



        void   *nzval;     // pointer to array of nonzero values, packed by row	


	

    int_t   *colind;    // pointer to array of column indices of the nonzeros	


	

    int_t   *rowptr;   // pointer to array of beginning of rows in nzval[]and colind[]	


	

}  NRformat_loc;	


	





SuperLU tutorial 14 

Distributed Compressed Row Storage 

  Processor P0 data structure:	


  nnz_loc = 5	


  m_loc = 2	


  fst_row = 0  // 0-based indexing 	


  nzval  = { s,  u,  u,  l,  u }	


  colind = { 0,  2,  4,  0,  1 }	


  rowptr = { 0, 3, 5 }	



  Processor P1 data structure:	


  nnz_loc = 7	


  m_loc    = 3	


  fst_row  = 2   // 0-based indexing	


  nzval   = { l,  p,  e,  u,  l,  l,  r }	


  colind  = { 1, 2,  3,  4,  0, 1, 4 }	


  rowptr = { 0, 2, 4, 7 }	
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A is distributed on 2 processors:	



u	
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 2D block cyclic layout	
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Internal : distributed L & U factored matrices 
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Process grid and MPI communicator 

 Example:  Solving a preconditioned linear system 	

	


	

    M-1A x = M-1 b	



 	

    M = diag(A11, A22, A33)	


	


	

à use SuperLU_DIST for	


	

     each diagonal block	


	


	


 Create 3 process grids, same logical ranks (0:3),	


	

but different physical ranks	


 Each grid has its own MPI communicator	



A22 

A33 

A11 0 1 
2 3 

4 5 
6 7 

8 9 
10 11 
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Two ways to create a process grid 

 superlu_gridinit( MPI_Comm Bcomm, int nprow, 	


	

 	

 	

 	

int npcol, gridinfo_t *grid );	


  Maps the first {nprow, npcol} processes in the MPI communicator 

Bcomm to SuperLU 2D grid	



 superlu_gridmap( MPI_Comm Bcomm, int nprow, 	


	

    int npcol, int usermap[], int ldumap, gridinfo_t *grid );	


  Maps an arbitrary set of  {nprow, npcol } processes in the MPI 

communicator Bcomm to SuperLU 2D grid.  The ranks of the selected 
MPI processes are given in usermap[] array. 	


	

For example:	
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Review of Gaussian Elimination (GE) 

  Solving a system of linear equations Ax = b	



  First step of GE:  (make sure      not too small . . . Otherwise do pivoting)	



  Repeats GE on C	


  Results in {L\U} decomposition (A = LU)	



  L lower triangular with unit diagonal, U upper triangular	



  Then, x is obtained by solving two triangular systems with L and U	
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Sparse factorization 
"   Store A explicitly …  many sparse compressed formats 
"   “Fill-in” . . . new nonzeros in L & U 

"   Typical fill-ratio: 10x for 2D problems, 30-50x for 3D problems 
"   Graph algorithms: directed/undirected graphs, bipartite graphs, 

paths, elimination trees, depth-first search, heuristics for NP-hard 
problems, cliques, graph partitioning, . . . 

"   Unfriendly to high performance, parallel computing 
"   Irregular memory access, indirect addressing, strong task/data 

dependency 
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Graph tool: reachable set, fill-path 

Edge (x,y) exists in filled graph G+ due to the path: x  7  3  9  y 
 
"   Finding fill-ins   finding transitive closure of G(A) 
 

+ 
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Algorithmic phases in sparse GE 

1.  Minimize number of fill-ins, maximize parallelism  (~10% time) 
"   Sparsity structure of L & U depends on that of A, which can be changed by 

row/column permutations (vertex re-labeling of the underlying graph) 
"   Ordering (combinatorial algorithms; “NP-complete” to find optimum 

[Yannakis ’83]; use heuristics) 

2.  Predict the fill-in positions in L & U (~10% time) 
"   Symbolic factorization (combinatorial algorithms) 

3.  Design efficient data structure for storage and quick retrieval of the 
nonzeros 
"   Compressed storage schemes 

4.  Perform factorization and triangular solutions (~80% time) 
"   Numerical algorithms (F.P. operations only on nonzeros) 
"   Usually dominate the total runtime 

"   For sparse Cholesky and QR, the steps can be separate; 
     for sparse LU with pivoting, steps 2 and 4 my be interleaved. 

21 



SuperLU tutorial 

General Sparse Solver 

 Use (blocked) CRS or CCS, and any ordering method	


  Leave room for fill-ins !  (symbolic factorization)	



 Exploit “supernode” (dense) structures in the factors	


  Can use Level 3 BLAS	


  Reduce inefficient indirect addressing (scatter/gather)	


  Reduce graph traversal time using a coarser graph	



22	





SuperLU tutorial 23 

Numerical Pivoting 

  Goal of pivoting is to control element growth in L & U for stability	


  For sparse factorizations, often relax the pivoting rule to trade with better 

sparsity and parallelism (e.g., threshold pivoting, static pivoting , . . .)	



  Partial pivoting used in sequential SuperLU  and SuperLU_MT (GEPP) 	


  Can force diagonal pivoting (controlled by diagonal	


	

threshold)	



  Hard to implement scalably for sparse factorization	



  Static pivoting used in SuperLU_DIST (GESP)	


  Before factor, scale and permute A to maximize diagonal: Pr Dr A Dc = A’	


  During factor A’ = LU, replace tiny pivots by           , without changing data 

structures for L & U	


  If needed, use a few steps of iterative refinement after the first solution	


  quite stable in practice	



Aε

b 

s x x 

x   x    x 
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Ordering : Minimum Degree 

Local greedy: minimize upper bound on fill-in	
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Ordering : Nested Dissection  

 Model problem: discretized system Ax = b from certain PDEs, 
e.g., 5-point stencil on  n x n  grid,  N = n2	


  Factorization flops: O( n3 ) = O( N3/2 )	



 Theorem: ND ordering gives optimal complexity in exact 
arithmetic [George ’73, Hoffman/Martin/Rose]	
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ND Ordering 

 Generalized nested dissection [Lipton/Rose/Tarjan ’79]	


  Global graph partitioning: top-down, divide-and-conqure 	

	


  Best for largest problems	


  Parallel codes available: ParMetis, PT-Scotch	


  First level	



  Recurse on A and B	


 Goal: find the smallest possible separator S at each level	



  Multilevel schemes: 	


•  Chaco [Hendrickson/Leland `94],  Metis [Karypis/Kumar `95]	



  Spectral bisection [Simon et al. `90-`95]	


  Geometric and spectral bisection [Chan/Gilbert/Teng `94]	



A B S 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

Sxx
xB
xA

0
0



SuperLU tutorial 27 

ND Ordering 

2D mesh 	

 A,  with row-wise ordering	



A,  with ND ordering	

 L &U factors	
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Ordering for LU (unsymmetric) 

  Can use a symmetric ordering on a symmetrized matrix	


•  Case of partial pivoting (serial SuperLU, SuperLU_MT):	


	

 	

Use ordering based on AT*A	


•  Case of static pivoting (SuperLU_DIST): 	


	

 	

Use ordering based on AT+A	


	



  Can find better ordering based solely on A, without 
symmetrization 	



•  Diagonal Markowitz   [Amestoy/Li/Ng `06]	


•  Similar to minimum degree, but without symmetrization	



•  Hypergraph partition   [Boman, Grigori, et al. `08]	


•  Similar to ND on ATA, but no need to compute ATA	
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Ordering Interface in SuperLU 

 Library contains the following routines:	


  Ordering algorithms: MMD [J. Liu], COLAMD [T. Davis]	


  Utility routines: form AT+A , ATA 	



 Users may input any other permutation vector (e.g., using 
Metis, Chaco, etc. )	



       . . .	


      set_default_options_dist ( &options );	


      options.ColPerm = MY_PERMC;    // modify default option	


      ScalePermstructInit ( m, n, &ScalePermstruct );	


      METIS (  . . . , &ScalePermstruct.perm_c );	


      . . .	


      pdgssvx ( &options, . . . , &ScalePermstruct, . . . );	


       . . .	
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Symbolic Factorization 

 Cholesky [George/Liu `81 book]	


  Use elimination graph of L and its transitive reduction (elimination tree)	


  Complexity linear in output: O(nnz(L))	



 LU	


  Use elimination graphs of L & U and their transitive reductions 

(elimination DAGs) [Tarjan/Rose `78, Gilbert/Liu `93, Gilbert `94]	


  Improved by symmetric structure pruning [Eisenstat/Liu `92]	


  Improved by supernodes	


  Complexity greater than nnz(L+U), but much smaller than flops(LU)	
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Numerical Factorization 

 Sequential SuperLU	


  Enhance data reuse in memory hierarchy by calling Level 3 BLAS on 

the supernodes	


 SuperLU_MT	



  Exploit both coarse and fine grain parallelism	


  Employ dynamic scheduling to minimize parallel runtime	



 SuperLU_DIST	


  Enhance scalability by static pivoting and 2D matrix distribution	
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SuperLU_MT  [Li/Demmel/Gilbert] 

 Pthread or OpenMP	


 Left-looking – relatively more READs than WRITEs	


 Use shared task queue to schedule ready columns in the 

elimination tree (bottom up)	


 Over 12x speedup on conventional 16-CPU SMPs (1999)	
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 MPI	


 Right-looking – relatively more WRITEs than READs	


 2D block cyclic layout	


 Look-ahead to overlap comm. & comp.	


 Scales to 1000s processors	
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SuperLU_DIST  [Li/Demmel/Grigori/Yamazaki] 
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Multicore platforms 

 Intel Clovertown: 	


 2.33 GHz Xeon, 9.3 Gflops/core	


 2 sockets x 4 cores/socket	


 L2 cache: 4 MB/2 cores	



 Sun VictoriaFalls: 	


 1.4 GHz UltraSparc T2, 1.4 Gflops/core	


 2 sockets x 8 cores/socket x 8 hardware threads/core	


 L2 cache shared: 4 MB	
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Benchmark matrices 

apps dim nnz(A) SLU_MT 
Fill 

SLU_DIST 
Fill 

Avg.  
S-node 

g7jac200 Economic 
model 

59,310 0.7 M 33.7 M 33.7 M 1.9 

stomach 3D finite 
diff. 

213,360 3.0 M 136.8 M 137.4 M 4.0 

torso3 3D finite 
diff. 

259,156 4.4 M 784.7 M 785.0 M 3.1 

twotone Nonlinear 
analog 
circuit 
 

120,750 1.2 M 11.4 M 11.4 M 2.3 

35 
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Intel Clovertown 

 Maximum speedup 4.3,  smaller than conventional SMP	


 Pthreads scale better	


 Question: tools to analyze resource contention?	
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SunVictoriaFalls – multicore + multithread 

  Maximum speedup 20 
   Pthreads more robust, scale better 
   MPICH crashes with large #tasks, 

mismatch between coarse and 
fine grain models 

SuperLU_MT	

 SuperLU_DIST	
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Performance of larger matrices 

  Sparsity ordering: MeTis applied to structure of A’+A	



Name Application Data 
type 

N |A| / N 
Sparsity 

|L\U| 
(10^6) 

Fill-ratio 

matrix211 Fusion, 
MHD eqns 
(M3D-C1) 

Real 801,378 161 1276.0 9.9 

cc_linear2 
 

Fusion, 
MHD eqns 
(NIMROD) 

Complex 259,203 109 199.7 7.1 

matick Circuit sim. 
MNA method 
(IBM) 

Complex 16,019 4005 64.3 1.0 

cage13 DNA 
electrophoresis 

Real 445,315 17 4550.9 608.5 
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Strong scaling (fixed size): Cray XE6 (hopper@nersc) 

  Up to 1.4 Tflops factorization rate	



  2 x 12-core AMD 'MagnyCours’ per node, 2.1 GHz processor	





SuperLU_DIST 3.0: better DAG scheduling 

"   Implemented new static scheduling and flexible look-ahead algorithms that 
shortened the length of the critical path.  

"   Idle time was significantly reduced (speedup up to 2.6x) 
"   To further improve performance: 

"   more sophisticated scheduling schemes 
"   hybrid programming paradigms 

40 

0

3 4

0 1 2

3 4 5 3

0 2 0 1

3 4 5 3 4 5

0 1 2 0 1 2 0

1

1

2

2

5

0 1

4

0 1 2 0

3 4 5

2

5

0

0

3

3

3

look−ahead window

8 32 128 512 2048
0

5

10

15

20

25

30

35

40

45

50

Number of cores

F
a

ct
o

ri
za

tio
n

/C
o

m
m

u
n

ic
a

tio
n

 t
im

e
 (

s)

 

 

version 2.5
version 3.0

32 128 512 2048
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Number of cores

F
a

ct
o

ri
za

tio
n

/C
o

m
m

u
n

ic
a

tio
n

 t
im

e
 (

s)

 

 

version 2.5
version 3.0

Accelerator, n=2.7M, fill-ratio=12 DNA, n = 445K, fill-ratio= 609 



Multicore / GPU-Aware 

"   New hybrid programming code: MPI+OpenMP+CUDA, able to use 
all the CPUs and GPUs on manycore computers. 

"   Algorithmic changes:   
"   Aggregate small BLAS operations into larger ones. 
"   CPU multithreading Scatter/Gather operations. 
"   Hide long-latency operations. 

"   Results: using 100 nodes GPU clusters, up to 2.7x faster,  2x-5x 
memory saving.  

"   New SuperLU_DIST 4.0 release, August 2014. 
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CPU + GPU algorithm 
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




  

①  Aggregate small blocks 	


②  GEMM of large blocks	


③  Scatter 	



GPU acceleration: 	


Software pipelining to 
overlap GPU execution 
with CPU Scatter, data 
transfer.  	
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ILU Interface 

 Available in serial SuperLU 4.0, June 2009	


 Similar to ILUTP [Saad]: “T” = threshold, “P” = pivoting 

  among the most sophisticated, more robust than structure-
based dropping (e.g., level-of-fill)	



 ILU driver: SRC/dgsisx.c	


	

ILU factorization routine: SRC/dgsitrf.c	


	

GMRES driver: EXAMPLE/ditersol.c	


 Parameters:	



  ilu_set_default_options ( &options )	



•  options.ILU_DropTol – numerical threshold ( τ )	


•  options.ILU_FillFactor – bound on the fill-ratio ( γ  ) 
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Result of Supernodal ILU  (S-ILU) 

 New dropping rules S-ILU(τ, γ) 
  supernode-based thresholding (τ ) 
  adaptive strategy to meet user-desired 

 fill-ratio upper bound ( γ ) 
 

 Performance of S-ILU 
  For 232 test matrices, S-ILU + GMRES converges with 138  

cases (~60% success rate) 
  S-ILU + GMRES is 1.6x faster than scalar ILU + GMRES 

i	
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S-ILU for extended MHD (fusion energy sim.) 

 AMD Opteron 2.4 GHz (Cray XT5) 
  ILU parameters: τ = 10-4, Υ = 10 
 Up to 9x smaller fill ratio, and 10x faster 

Problems order Nonzeros 
(millions) 

SuperLU 
Time     fill-ratio 

S-ILU 
time  fill-ratio 

GMRES 
Time     Iters 

matrix31 17,298 2.7 m 33.3 13.1 8.2 2.7 0.6 9 

matrix41 30,258 4.7 m 111.1 17.5 18.6 2.9 1.4 11 

matrix61 66,978 10.6 m 612.5 26.3 54.3 3.0 7.3 20 

matrix121 263,538 42.5 m x x 145.2 1.7 47.8 45 

matrix181 589,698 95.2 m x x 415.0 1.7 716.0 289 
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Tips for Debugging Performance 

 Check sparsity ordering	


 Diagonal pivoting is preferable	



  E.g., matrix is diagonally dominant, . . .	



 Need good BLAS library (vendor, ATLAS, GOTO, . . .)	


  May need adjust block size for each architecture	


	

( Parameters modifiable in routine sp_ienv() )	



•  Larger blocks better for uniprocessor	


•  Smaller blocks better for parallellism and load balance	



  Open problem: automatic tuning for block size?	
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Summary 

 Sparse LU, ILU are important kernels for science and engineering 
applications, used in practice on a regular basis	



 Performance more sensitive to latency than dense case	


  Continuing developments funded by DOE SciDAC projects	



  Integrate into more applications 	


  Hybrid model of parallelism for multicore/vector nodes, differentiate 

intra-node and inter-node parallelism	


  Hybrid programming models,  hybrid algorithms	



  Parallel HSS precondtioners	


  Parallel hybrid direct-iterative solver based on domain decomposition	
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Exercises of SuperLU_DIST 
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 https://redmine.scorec.rpi.edu/anonsvn/fastmath/docs/
ATPESC_2014/Exercises/superlu/README.html	



 On vesta:	


/gpfs/vesta-fs0/projects/FASTMath/ATPESC-2014/examples/superlu	


/gpfs/vesta-fs0/projects/FASTMath/ATPESC-2014/install/superlu	


	


	


 http://crd.lbl.gov/~xiaoye/SuperLU/slu_hands_on.html	
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Examples in EXAMPLE/ 

 pddrive.c: Solve one linear system	


 pddrive1.c: Solve the systems with same A but different right-

hand side at different times	


  Reuse the factored form of A	



 pddrive2.c: Solve the systems with the same pattern as A	


  Reuse the sparsity ordering	



 pddrive3.c: Solve the systems with the same sparsity pattern 
and similar values	


  Reuse the sparsity ordering and symbolic factorization	



 pddrive4.c: Divide the processes into two subgroups (two 
grids) such that each subgroup solves a linear system 
independently from the other.	
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SuperLU_DIST Example Program 

  EXAMPLE/pddrive.c	



  Five basic steps	


1.  Initialize the MPI environment and SuperLU process grid	


2.  Set up the input matrices A and B	


3.  Set the options argument (can modify the default)	


4.  Call SuperLU routine PDGSSVX	


5.  Release the process grid, deallocate memory,  and terminate the MPI 

environment	
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Fortran 90 Interface in FORTRAN/ 

 All SuperLU objects (e.g., LU structure) are opaque for F90	


  They are allocated, deallocated and operated in the C side and not 

directly accessible from Fortran side.	


 C objects are accessed via handles that exist in Fortran’s user 

space	


 In Fortran, all handles are of type INTEGER	


 Example:  FORTRAN/f_5x5.f90	



0.12,0.18,0.5,0.16,0.21,0.19  , ======

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

= lrepus

rll
ue

pl
ul

uus

A
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Exercises of SuperLU_DIST 
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 https://redmine.scorec.rpi.edu/anonsvn/fastmath/docs/
ATPESC_2014/Exercises/superlu/README.html	



 On vesta:	


/gpfs/vesta-fs0/projects/FASTMath/ATPESC-2014/examples/superlu	


/gpfs/vesta-fs0/projects/FASTMath/ATPESC-2014/install/superlu	


	


	


 http://crd.lbl.gov/~xiaoye/SuperLU/slu_hands_on.html	
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Examples in EXAMPLE/ 

 pddrive.c: Solve one linear system	


 pddrive1.c: Solve the systems with same A but different right-

hand side at different times	


  Reuse the factored form of A	



 pddrive2.c: Solve the systems with the same pattern as A	


  Reuse the sparsity ordering	



 pddrive3.c: Solve the systems with the same sparsity pattern 
and similar values	


  Reuse the sparsity ordering and symbolic factorization	



 pddrive4.c: Divide the processes into two subgroups (two 
grids) such that each subgroup solves a linear system 
independently from the other.	
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SuperLU_DIST Example Program 

  EXAMPLE/pddrive.c	



  Five basic steps	


1.  Initialize the MPI environment and SuperLU process grid	


2.  Set up the input matrices A and B	


3.  Set the options argument (can modify the default)	


4.  Call SuperLU routine PDGSSVX	


5.  Release the process grid, deallocate memory,  and terminate the MPI 

environment	
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Fortran 90 Interface in FORTRAN/ 

 All SuperLU objects (e.g., LU structure) are opaque for F90	


  They are allocated, deallocated and operated in the C side and not 

directly accessible from Fortran side.	


 C objects are accessed via handles that exist in Fortran’s user 

space	


 In Fortran, all handles are of type INTEGER	


 Example:  FORTRAN/f_5x5.f90	



0.12,0.18,0.5,0.16,0.21,0.19  , ======

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

= lrepus
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